FPGA in Quantum

Segmented Averager Semester Project

Husnu Erman Nadas

Final Submission Report

FPGA in Quantum

Table of Contents
A.Algorithm Verification in MATLAB

AlIntroduction
A.2.Design Flow
A.2.1.Generating Test Signals
A.2.2 Fixed Point Conversion and Export
A.2.3.Segmented Averaging
A.3.Implementation and the Top Level File
B.FPGA Implementation
B.l.Introduction
B.2.Implementation
B.2.1.Start and Trigger Detection
B.2.2.Storing the Accumulated Signal
B.2.3.Counters
B.2.4.Storing the Accumulated Signal
B.2.5.Synchronization, Delays, and the Accumulation Program Flow
B.2.6.Validating and Outputting the Accumulated Signal
B.3.Synthesis
B.4.Block Diagram of the Architecture
C.Functional Verification
C.lIntroduction
C.2.Implementation
C.2.1.Clock Generation
C.2.2.Start Signal Generation
C.2.3.Trigger Generation
C.2.4.Reading the Signal From a Text File
C.2.5.Writing the Generated Output to a Text File
C.3.Verification Process
C.3.1.Behavioral Simulation
C.3.2.Post Synthesis Simulations
D.Test With Quantum Signals and Optimizations
D.1.Introduction
D.2.Verification With Real Experiment Measurements
D.2.1.Behavioral Simulation
D.2.2.Post-Synthesis Functional Simulation

D.2.3.Post-Synthesis Timing Simulation

Final Project i

Nadas, Husnu Erman

L NN NN YOO DY R R R WWW W W W WN R e e e

O S Sy
K B © © o o

Table of Contents

FPGA in Quantum

D.3.Pin Routing and Bit-Stream Generation
E.Verification Using One Segment and a Rectangular Waveform
E.lIntroduction
E.2.Implementation
E.2.1.Without Using ADC/DAC Channels (Using Only Internal Connections)
E.2.2.Using ADC/DAC Channels
EVerification Using Multiple Segments of Various Rectangular Waveforms
Fl.Introduction
F2.Implementation
G.Verification Using a Pseudo-Randomly Generated Noisy Rectangular Waveform
G.l.Introduction
G.2.Implementation
G.2.1.Noise Generation through a Pseudo-Random Number Generator
G.2.2.UART-Based User Interface for Experiment Control
H.Verification Using Quantum Experiment Signals
H.l.Introduction

H.2.Implementation

Final Project ii

Nadas, Husnu Erman

13
14
14
14
14
16
19
19
19
21
21
21
21
24
25
25
25

Table of Contents

FPGA in Quantum Nadas, Husnu Erman

A. Algorithm Verification in MATLAB
A.l Introduction

In this subtask of the project, the focus is on creating the test signals for the Segmented Averaging imple-
mentation and testing a basic algorithm implementation on MATLAB. The main points are to generate a
signal of #R repetitions, formed of #L different segments with #N samples. Since these signals will be used
to validate an experiment setup, each segment is preferred to be of various forms to increase variation and
reduce the probability of false positives. Covering this ground, a different noise is added to each segment
to replicate real-life flaws and nonidealities. Once the test signals are generated, averaging must be per-
formed to suppress flaws in the signal. Averaging may also be used for statistical interpretations of quan-
tum systems. The primary motivation behind using Segmented Averaging is breaking down a large amount
of data into smaller, more manageable parts and performing calculations in a more resourceful manner.
When utilizing the faster processing power of the FPGAs, the larger memory capacity of computers is sac-
rificed. Thus, in this project, Segmented Averaging is a better fit. One other point to consider is the resolu-
tion of the instruments. Since signals must be generated digitally from an FPGA, they must be converted to
analog signals via a DAC. A fixed-point representation of the signals must also be implemented to cover
this ground. With all constraints covered, a basic implementation of Segmented Averaging might be de-
signed. For the following parts of the project, the signals should be exported in a form that can be read
from an FPGA.

A.2. Design Flow
A.2.1. Generating Test Signals

Various test signals will be generated to examine the experiment setup. This process is done in MATLAB.
In this implementation, a signal catalog of different frequency-independent shapes is used. Without any
dependency on the sample count, various signal shapes are generated. These signals are then concatenat-

ed to form a signal of length #N * #L * #R samples.

A.2.2. Fixed Point Conversion and Export

In real-world cases, incoming analog signals can only be read into an FPGA through a digital-to-analog
converter. In this case, the resolution of the DAC of the RedPitaya FPGA is 14 bits. This equates to 13 bits of
resolution per volt, considering the input full-scale voltage range is +1V.

The signal is digitized to -8192, +8191 for =1V, then converted to signed binary in MATLAB using the
dec2bin() function. Finally, the generated binary representation is written in a text file and later imported
into the testbench module.

A.2.3. Segmented Averaging

A simple algorithm for segmented averaging is implemented in MATLAB. A “Segments Average” variable
stores the accumulation, and in each iteration of the for loop, the next segment is added to the current
accumulation. Lastly, dividing the final accumulated signal by the number of repetitions #R yields the av-
eraged signal.

Midterm Project 1 Algorithm Verification in MATLAB

FPGA in Quantum Nadas, Husnu Erman

A.3. Implementation and the Top Level File

Every process mentioned in the A.2. Design Flow chapter of the report is made into a function. These func-
tions are finally implemented in a top-level file. A critical attribute of these functions is that they are tun-
able by parameters #N, #L, and #R. This way, the desired modularity is simplified for the end user through
a simple act of assigning values to three variables. For further modularity, a parameter “offset” is used,
which defines the number of samples for which the generated shapes are separated. A flow chart of the

final implementation is provided in Figure A.3.1.

User Defined Properties (N, L, R,
offset, choice)

Final Averaged
ignal

TOP LEVEL
(main.m)

Digital
Implementation

test_signals.m convertm fo-oooL.. »| segmented_averager.m

{ Utilities }

signal
Catalog.m

Shapes.m

Figure A.3.1: Flow Diagram of the Implementation

The final resulting graphs of the analog and fixed-point implementations are provided in Figures A.3.2 and
A33.

oMo ot g

oy Ao Sl R Soquence Choven

Figure A.3.2: Final Plot of the Analog Implementation

N Mo ot i St

Figure A.3.3: Final Plot of the Fixed Point Implementation

Midterm Project 2 Algorithm Verification in MATLAB

FPGA in Quantum Nadas, Husnu Erman

B. FPGA Implementation
B.l.Introduction

With the grounds set on why the Segmented Averaging is a better fit for this project and how it will be im-
plemented in A.Introduction chapter, this subtask focuses on the actual FPGA implementation. Since the
division by numbers not of 2’s powers on an FPGA is not efficient and precise, only the accumulation part
is implemented in the programmable logic device. The FPGA should start accumulating the signal when a
trigger is received and output the final accumulated signal when the specified number of sequence repeti-

tions are done.

B.2. Implementation
B.2.1. Start and Trigger Detection

A rising-edge detector and latch functionality implement the trigger and start mechanism. Rising edge de-
tection is done by delaying the input signal for one clock cycle and then checking if the current signal is
high when the delayed signal is low. Since every update cycle is constrained by the clock, the mentioned
situation can only occur with the rising edge of a signal. When a rising edge is detected, a latch is activat-
ed. For the trigger, the latch lasts for the number of samples + 3 for reasons mentioned in Chapter B.2.5.
For the start pulse, the latch lasts until the accumulation is completed.

B.2.2. Storing the Accumulated Signal

A two-port Block Memory is implemented to store the accumulated signal. One port is reserved for read-
ing and one for writing the data. Chapter B.2.4 elaborates on how these ports are used. The size of the
Block Memory is chosen as 2048 X 10. This design choice allows the program to be reconfigurable with

any number of segments, a maximum of 10, and any counts of samples, a maximum of 2048.

B.2.3. Counters

Internal counters for samples, segments, and sequences are implemented. These are used in several de-
sign aspects, such as how long the trigger latch should stay on, addressing memory, and checking if the
program is complete. The counter mechanics are straightforward. The sample counter starts with 1 and
counts up to the number of samples #N. If the next trigger comes right at the end of sampling, the sample
counter resets to 1. But if the next trigger is not present exactly periodically with the number of samples
times clock ticks, the counter counts two more times for the reasons mentioned in Chapter B.2.5. At the
rising edge of every trigger, a segment is counted, and if the program is at the last segment, a sequence is
counted. When the sequence count reaches the number of repetitions, the program goes into a completed

state and starts outputting the accumulated signal.

B.2.4. Storing the Accumulated Signal

As mentioned before, the signal accumulates in the block memory. Read and write operations without col-
lisions at the same address in a block memory take as long as the amount of read latency plus one clock
tick. Initially, the memory is read, and in the next clock cycle, the new information containing the old in-
formation from the same address is written. The information from the same address is the previous ac-
cumulation of that particular sample, which is added to the current sample from the signal to be written
on that same address. The memory is addressed using the internal counters.

Midterm Project 3 FPGA Implementation

FPGA in Quantum Nadas, Husnu Erman

B.2.5. Synchronization, Delays, and the Accumulation Program Flow

The signal must be synchronized with every operation for an accurate implementation. From rising edge
detection to block memory read and write operations, each operation takes time to yield results. The trig-
ger's rising edge detection introduces a single clock tick of delay. Counters are coupled with the trigger's
rising edge. Memory readout should be done prior to the writein as the readout information is required for
accumulation. The readout address is coupled to the counters to simplify the design, introducing another
clock tick of delay. The readout address could be coupled to the rising edge of the trigger, but this design
choice would further complicate the design. The read latency of the implemented block memory is a sin-
gle clock tick, meaning the readout lags the counter by two clock ticks. Finally, the writein introduces an-
other clock tick of delay. Since the writein uses data from the readout, this delay is inevitable. Taking these
aspects into account, from receiving the signal to writing the accumulation into the block memory, takes

four clock ticks or 32 ns.

B.2.6. Validating and Outputting the Accumulated Signal

Accumulating data is always volatile and susceptible to overflows. This is checked by a simple if statement
that checks whether the added signal’s magnitude is larger than the memory's bit depth. The program will

warn the user if an overflow happens, even for a single sample.

Once specified repetitions of sequences are accumulated, the program will start outputting the accumu-
lated signal with corresponding segment numbers. Output comes directly from the block memory, and
readout is addressed using a simple output counter.

B.3. Synthesis

The implementation is synthesized with FPGA constraints. Resource utilization is given in Table B.3.1.

Resource Estimation Available Utilization %
LUT 498 17600 2.83
FF 243 35200 0.69
BRAM 20 60 33.33
DSP 1 80 1.25
() 98 100 98
BUFG 1 32 3.13

Table B.3.1: Resource Utilization

Other than Block RAM and I/O, resource utilization is observed to be frugal.

I/O is utilized at 98%. As all the inputs required for this implementation are declared, the design does not

require any reconsiderations.

One-third of the available Block RAM is utilized. As the accumulated signal is the only significant amount

of data that must be stored, this does not require any design reconsiderations.

Midterm Project

FPGA Implementation

FPGA in Quantum

B.4. Block Diagram of the Architecture

A flow diagram is provided below to further elaborate on the module's architecture.

Midterm Project

Positive Edge
of a Trigger

8ns delay

Positive Edge
of Start

—

starts
Start Latch

turns off when sample
count is reached

addresses |
(8ns delay)

Sample

Counter

Segment
Counter

Accumulation

stores

(16ns delayz

Accumulated when R

Sequence
Counter

Nadas, Husnu Erman

Starts

Signal repetitions of
(Block Memory)

|

—»| Output Signal

Data Validation

Figure B.4.2: Block Diagram of the Architecture

FPGA Implementation

FPGA in Quantum Nadas, Husnu Erman

C.Functional Verification
C.1. Introduction

In Subtask B, a synthesizable implementation of the accumulator was made. In this subtask, the focus is
on validating the implementation with test signals. A testbench configurable by the initially mentioned
parameters #N, #L, and #R will be used for validation. This testbench is responsible for generating the re-
set signal, the clock, trigger, and start pulses, sending the signal, receiving the accumulated signal, and ex-
porting the accumulated signal. The testbench's implementation introduces a new parameter named #TP
that defines the trigger period. This approach replicates the case in which different sequences or segments
of the signal are not received back to back.

C.2. Implementation

C.2.1. Clock Generation

A clock of 125 MHz or with a period of 8 ns is generated and fed to the module.

C.2.2. Start Signal Generation

A trigger counter is used to generate the start pulse with a tunable width. A latch mechanism coupled to
the start pulse is used to ease the process of when to create triggers. A start delay parameter defines when

the start signal will be sent.

C.2.3. Trigger Generation

A trigger counter is used to generate periodic triggers with a tunable width. When the counter starts, the
trigger is sent, and the counter counts up to TP. Once the trigger period is reached, the counter resets to
generate the subsequent trigger.

C.2.4. Reading the Signal From a Text File

The generated signal from MATLAB is read into the testbench using the $fscanf() function. This function
outputs the data asynchronously, so the asynchronous signal must be synchronized with the clock by as-

signing it to a synchronously updated register.

C.2.5. Writing the Generated Output to a Text File

When the completed signal is received, it is written into a text file using $fwrite(). This text file is then used
the compare the FPGA simulation results with the MATLAB results. To match the delay intentionally
added for the module to output the signal after going into a completed state, the start of the output

counter is delayed for two clock ticks.

Midterm Project 6 Functional Verification

FPGA in Quantum

C.3. Verification Process

C.3.1. Behavioral Simulation

Nadas, Husnu Erman

Averaged signals from the FPGA implementation simulation and MATLAB algorithm implementation were

compared. The resulting maximum difference was found to be 27.389, or %0.17, compared to a total magni-

tude of 16384. The waveforms of the behavioral simulation are provided in Figure C.3.1.1, and a plot of the

averaged simulation signal on top of the averaged MATLAB signal is provided in Figure C.3.1.2.

SIMULATION

Behavioral Simulation - Functional - sim_1 - tb_accumulator

| PostSynthesis Simuation - Funcional - sim_1 - to_accumulator Post-Synthesis Simulation - Timing -sim_1 - _acoumulator

w [0][13:0)
W [1][13:0)

noisy_binary.txt

W writein_adar(14:0]

W wiitein[35:0]

W out_counter

CE

Midterm Project

tb_accumulator_behav.wefg

Magnitude (14-bit Signed Integer)

8000

6000

4000

2000

-2000

-4000

-6000

-8000

Figure C.3.1.1: Behavioral Simulation Output

Behavioral Simulation Average
T T T

MATLAB
— — Behavioral Simulation

Time (us)

Figure C.3.1.2: Behavioral Simulation vs MATLAB Averaging

40

Functional Verification

FPGA in Quantum Nadas, Husnu Erman

C.3.2. Post Synthesis Simulations

Following the behavioral simulation, post-synthesis functional and timing simulations are made with few-
er sample counts and fewer repetitions. As can be observed from figures C.3.2.1 and C.3.2.2, post-synthesis
simulation results match behavioral simulation results, revealing that no FPGA constraints are violated

and tuned parameters match precisely with the MATLAB Algorithm.

SIMULATION Benavioral Simulation - Functional - sim_1 - to_accumulator | Post-Synthesis Simulation - Functional - sim_1 - tb_accumulator |

tb_accumulator_behav.wcfy

Q W @ @ X « K w2 o e

 signal_of35:0]

 data_val

SIMULATION Behavioral Simulation - Functionl - sim_1 - to_accumulat Post-Synthesis Simulation - Functional - sim_1 - to_accumulator Post.Synthesis Simulation - Timing - sim_1 - to_accumulator

W signal_i{130]

counts

W]

Figure C.3.2.2: Post-Synthesis Timing Simulation Output

Midterm Project 8 Functional Verification

FPGA in Quantum

Nadas, Husnu Erman

Averaged signals from the FPGA implementation simulation and MATLAB algorithm implementation were

compared. The resulting maximum difference was found to be 54.14, or %0.33, compared to a total magni-

tude of 16384. This is higher compared to the simulation done with more repetitions, as expected, but still

low enough of an error to obtain valid information. A plot of the averaged simulation signal on top of the

averaged MATLAB signal is provided in Figure C.3.2.3.

Magnitude (14-bit Signed Integer)

8000

6000

IS
S
5]
5}

2000

o

-2000 -

-4000

-6000

-8000

MATLAB
7 [|— — Post Synthesis Simulation

I\

0.5

Time (us)

Figure C.3.2.3: Post-Synthesis Simulation vs MATLAB Averaging

This minuscule error occurs because MATLAB only works with integers or decimal numbers, but simula-

tion averaging includes converting to and from binary numbers. Albeit, the module implementation in

Subtask B is deemed valid based on the simulations.

Midterm Project

Functional Verification

FPGA in Quantum Nadas, Husnu Erman

D. Test With Quantum Signals and Optimizations
D.1. Introduction

In the previous subtasks, the accumulator module was implemented and tested using test signals generat-
ed from MATLAB. After testing, the design was deemed valid in Subtask C. In this subtask, real quantum
experiment signals will be used to test the module. Optimizations to meet the expected performance crite-
ria will be made if required. Finally, a bitstream generation will be done using a previously generated sys-

tem wrapper to examine if any violations occur.

D.2. Verification With Real Experiment Measurements

Measurement data of a qubit’s excited and ground state is provided. In MATLAB, this data is converted into
a signal with a form matching the previously generated test signals. In the generated signal, the sample
count #N is 300, the sequence repetition count #R is 10000, and the segment count #L is 2, with the first
segment being the ground state and the second segment being the excited state. The generated experi-
ment signal is fed to the module, and the simulation averaged data is compared with MATLAB algorithm

averaged data.

D.2.1. Behavioral Simulation

Behavioral simulation was run using the provided test signals. The output waveforms of the simulation are
provided in Figure D.2.1.1.

SIMULATION ~ FostSynthesis

laion - Timing - sim_1 - tb_accumlator Behavioral Simulation - Functional - sim_1 - th_accumulator

M

TR N 1 I

|
|

<

>

>

Figure D.2.1.1: Behavioral Simulation Output

Midterm Project 10 Test With Quantum Signals and Optimizations

FPGA in Quantum Nadas, Husnu Erman

The resulting maximum difference was found to be 52.55, or %0.32, compared to a total magnitude of

16384. A plot of the averaged simulation signal on top of the averaged MATLAB signal is provided in Figure
D.2.1.2.

Behavioral Averaged Signal

800

MATLAB
700 — — Behavioral Simulation

600
500

400 -

Quadrature [au]

0 100 200 300 400 500 600
Time [8 ns]

Figure D.2.1.2: Behavioral Simulation vs MATLAB Averaging

D.2.2. Post-Synthesis Functional Simulation

Post-synthesis functional simulation was run using the provided test signals. The output waveforms of the
simulation are provided in Figure D.2.2.1.

SIMULATION Post-Synthesis Simulation - Functional - sim_1 - th_accumulator | Behaviora!

uation - Functional - sim_1 -o_accumulator

tb_accumulator_behav.wefg™
Q W @ @ X « 1K T

48,000.072100

Bl > v sionalii130)

0:10]
2

W trig_counter{11:0]

Figure D.2.2.1: Post-Synthesis Functional Simulation Output

Midterm Project 11 Test With Quantum Signals and Optimizations

FPGA in Quantum Nadas, Husnu Erman

The resulting maximum difference was found to be 52.55, or %0.32, compared to a total magnitude of

16384. A plot of the averaged simulation signal on top of the averaged MATLAB signal is provided in Figure
D.2.2.2.

Functional Averaged Signal

MATLAB

— — Functional Simulation
700 -

600 -

400 -

Quadrature [au]

0 100 200 300 400 500 600
Time [8 ns]

Figure D.2.2.2: Functional Simulation vs MATLAB Averaging

D.2.3. Post-Synthesis Timing Simulation

Post-synthesis timing simulation was run using the provided test signals. The output waveforms of the
simulation are provided in Figure D.2.3.1.

SIMULATION - Post-Synthesis Simulation - Timing - sim_1 - to_accumulator

th_accumulator_behav.wefg
|l W @ a X o« +

45, 00004335

signal_i{130]

2 x o-10]
2

Protocol Instances | Obje:

Figure D.2.3.1: Post-Synthesis Timing Simulation Output

Midterm Project 12 Test With Quantum Signals and Optimizations

FPGA in Quantum Nadas, Husnu Erman

The resulting maximum difference was found to be 52.55, or %0.32, compared to a total magnitude of
16384. A plot of the averaged simulation signal on top of the averaged MATLAB signal is provided in Figure
D.2.3.2.

Timing Averaged Signal

MATLAB

— — Timing Simulation
700 -

500 -

400 -

300 -

Quadrature [au]

200

100

-100

-200

0 100 200 300 400 500 600
Time [8 ns]

Figure D.2.3.2: Timing Simulation vs MATLAB Averaging

The correct averaging results with less than one-percent error were acquired for quantum experiment
data.
D.3. Pin Routing and Bit-Stream Generation

Once the module was validated, it was placed in a functional system wrapper for the RedPitaya FPGA.
Then, the input signal of the module was routed to analog-to-digital converter channel 1. The start and
trigger pulses are connected to external IO positive pins 1 and O, respectively.

Once a valid routing was made, the bitstream was generated. The timing reports indicated no timing viola-

tions.
Setup Hold Pulse Width
Worst Negative Slack (WNS). 1.711ns Worst Hold Slack (WHS): 0.024 ns Worst Pulse Width Slack (WPWS): 1.845ns
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000ns Total Pulse Width Negative Slack (TPWS). 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 8553 Total Number of Endpoints: 8509 Total Number of Endpoints: 4645

All user specified timing constraints are met.

Figure D.3.1: Timing Report Summary

A positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Midterm Project 13 Test With Quantum Signals and Optimizations

FPGA in Quantum Nadas, Husnu Erman

E. Verification Using One Segment and a Rectangular Waveform
E.1. Introduction

In the Midterm Project, an accumulator module for a segmented averager was implemented. The imple-
mentation was verificated via simulations. In the Final Project, this module will be verificated through an
implementation of the module on the Red Pitaya FPGA. Using several kinds of waveforms generated on
the FPGA, the validity of the module will be assessed. In this part, a single segment rectangular waveform
will be used. This waveform will be generated on the FPGA and first will be routed without any external
connections. Following, the signal will be routed outside the FPGA with the trigger signals routed from the
external I/O pins.

E.2. Implementation
E.2.1. Without Using ADC/DAC Channels (Using Only Internal Connections)

Signal Generation module that generates rectangular waveforms of 1000 repetitions with a 50% duty cy-
cle, an amplitude 0.61V (5000 per magnitude resolution), a period 4ps (500 samples per a 125 MHz clock)
is implemented for this part of the assessment. The waveforms are sent with every trigger and the trigger
period is determined to match the signal period at 4ps. Simple counters are used to implement this func-

tionality. Figure E.2.1.1 provides a diagram for the architecure of this module.

Rising
Edge of the Start
Pulse

Clock (125 MHz)

1 A
Counter Counter
1] Y Y Y
< Trigger
Period
\J

Trigger = 1
(for 4 Clock Cylces)

Output = 5000 Output =0

Figure E.2.1.1: Architecture of the Signal Generation Module

The generated module is routed inside a signal analysis using internal wire declarations.

Expansion DIO_P Pin 1
Clock (125 MHz)
O(reset)

A

Clock Counter 4—‘
Y
——| accumulator [J

v ()(trigger_in_route)
v
<
I »| signal_generation <

v
Start Pulse

(O(trigger in_route)

Figure E.2.1.2: Module Connections and Signal Generation Module Architecure

An active high reset signal is generated from outside the FPGA thorugh external I/O pins. Start signal is
generated automatically after the reset period is over through a simple clock counter.

Final Project 14 One Segment Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

Resource utilization is provided in table E.2.1.1.

Resource Utilization Available Utilization %
LUT 3816 17600 21.68
LUTRAM 452 6000 7.53
FF 5480 35200 15.57
BRAM 47.5 60 7917
DSP 1 80 1.25
10 79 100 79
BUFG 5 32 15.63
MMCM 1 2 50

Table E.2.1.1: Post-Implementation Resource Utilization
Other than Block RAM and I/O, resource utilization is observed to be frugal.

I/O is utilized at 79%. As all the inputs required for this implementation are declared, the design does not
require any reconsiderations. 80% of the available Block RAM is utilized. At this point of the project this

does not require any reconsiderations.

Timing report is provided in Figure E.2.1.3.

Setup Hold Pulse Width
Worst Negative Slack (WNS). 0.522ns Worst Hold Slack (WHS): 0.032ns Worst Pulse Width Slack (WPWS): 1.845ns
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 12678 Total Number of Endpoints: 12634 Total Number of Endpoints: 6401

All user specified timing constraints are met.
Figure E.2.1.3: Timing Report
A positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Results obtained from the ILA are provided in figures E.2.1.4 and E.2.1.5.

ILA Status: Idle

Name

¥ |DAC_CH1[13:0]

W ADC_CH1[13:0]

signal_in_route

4 trigger_in_route

& nolabel_line180/reset

¥ nolabel_line180/signal_o[35:0]

¥ segment_no_o[3:0
4 u_ila_0_completed_o

& nolabel_line180/data_valid_o

& u_ila_0_overflow_o

Figure E.2.1.4: Signal Generation Module Output Signal

Final Project 15 One Segment Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

ILA Status: Idle

Name

%|DAC_CH1[13:0]

W ADC_CH1[13:0]

signal_in_route

& trigger_in_route
'& nolabel_line180/reset

' nolabel_line180/signal_o[35:0] 5000000

W segment_no_o[3:0

& u_ila_0_overflow_o

Figure E.2.1.4: Accumulator Module Output Signal

It can easily be observed that the accumulator module added the signal for 1000 times. This indicates a
perfect match with the expected result.

E.2.2. Using ADC/DAC Channels

The same Signal Generation module is routed using external connections. Signal and trigger outputs of
the module are routed to DAC Channel 1 and an external I/O pin respectively. An active high reset signal is
generated from outside the FPGA thorugh external I/O pins. Start signal is generated automatically after
the reset period is over through a simple clock counter.

signal_analysis

Clock (125 MHz)

A

Clock Counter ;
jﬁill_j—» ADC Channel 1

|

|

|

|

|

|

|

| accumulator

|

| @

|

| (S'gnm /KJumper Cable
I S|gnal generation -

: (mggm Expansion DIO_P Pin 4
|

|

|
|
1 |
‘\TESEQ |
|

(‘SMA Cable)

Start Pulse

Figure E.2.2.1: Module Connections and Signal Generation Module Architecure

Final Project 16 One Segment Rectangular Waveform

FPGA in Quantum

Resource utilization is provided in table E.2.2.1.

Nadas, Husnu Erman

Resource Utilization Available Utilization %
LUT 3818 17600 21.69
LUTRAM 444 6000 7.4
FF 5473 35200 15.55
BRAM 45 60 75
DSP 1 80 1.25
10 79 100 79
BUFG 5 32 15.63
MMCM 1 2 50

Table E.2.2.1: Post-Implementation Resource Utilization

Other than Block RAM and I/O, resource utilization is observed to be frugal.

I/O is utilized at 79%. As all the inputs required for this implementation are declared, the design does not

require any reconsiderations.

75% of the available Block RAM is utilized. At this point of the project this does not require any reconsider-

ations.

Timing report is provided in Figure E.2.1.2.

Setup Hold
Worst Negative Slack (WNS). 0498 ns
Total Negative Slack (TNS): 0.000 ns

Number of Failing Endpoints: 0
Total Number of Endpoints: 12560

All user specified timing constraints are met.

Total Hold Slack (THS):
Number of Failing Endpoints:

Worst Hold Slack (WHS):

Total Number of Endpoints:

Pulse Width
0.025 ns Worst Pulse Width Slack (WPWS): 1.845ns
0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
0 Number of Failing Endpoints: 0
12516 Total Number of Endpoints: 6374

Figure E.2.2.2: Timing Report

A positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Final Project

17

One Segment Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

Results obtained from the ILA are provided in figures E.2.2.3 and E.2.2 4.

ILA Status: Idle

Name

¥ DAC_CH1[13:0]

W ADC_CH1[13:0]
& nolabel_line180/reset

% nolabel_line180/signal_o[35:0]

W segment_no_o[3

14 u_ila_0_completed_o

ri_io_IBUF__0[4:3]
tri_io[1:1]
|_line180Arigger_out

& u_ila_0_trigger_in

ILA Status: Idle

Name

W DAC_CH1[13:0]

%|ADC_CH1[13:0]

& nolabel_line180/reset

' nolabel_line180/signal_o[35:0]

¥ segment_no_o[3:0]

4 u_ila_0_completed_o

& nolabel_line180/data_valid_o

8 u_ila_0_overflow_o

exp_p_tri_io

W exp_p_tri_io_IBUF_0[4:3]

¥ nolabel_line180/exp_p_tri_io[1:1]
'8 nolabel_line180Arigger_out

& u_ila_0_trigger_in

Figure E.2.2.4: Accumulator Module Output Signal

Some disturbance effects were observed on the output signal. Firstly it can be seen that the ADC input has
a-20 mV (200 per magnitude resolution) offset. Another issue is that even with a 50Q impedance mathcer,

still some reflections are present. These issues are both non-firmware related and can be compensated
with better components and calibration.

The accumulator module output signal was observed to have an amplitude 1000 times the ADC incoming
signal. Hence, the measurement can be deemed a good match with the expected results.

Final Project 18 One Segment Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

E. Verification Using Multiple Segments of Various Rectangular Waveforms

El. Introduction

In this part of the project, multiple various rectangular forms will be used to validate the design. This will
assess the design validity under different conditions. The routing will be done with external connections.
E2. Implementation

Signal Generation Multiple module that generates a three segment rectangular waveform of 1000 repeti-
tions is implemented. Each segment is 4ps (500 samples per a 125 MHz clock). The segment are sent with
every trigger and the trigger period is determined to match the signal period at 4ps. Simple counters are
used to implement this functionality. Figure F.2.1 provides a diagram for the architecure of this module.

Rising
Edge of the Start
Pulse

. Repemlon
H‘— Coumer

Tioger D>
Counter { .
.| Segment Z=2) Waveform 2 output
Counter ‘
< Trigger
Period

’ <1000

[

| & e

Trigger = 1

(for 4 Clock Cylces) Sample
Counter
: I

Figure F2.1: Architecture of the Multiple Signal Generation Module

Module connections follow the same layout provided in Figure E.2.2.1.

Resource utilization is provided in table F.2.1.

Resource Utilization Available Utilization %
LUT 3834 17600 21.78
LUTRAM 444 6000 740
FF 5486 35200 15.59
BRAM 45 60 75
DSP 1 80 1.25
10 79 100 79
BUFG 5 32 15.63
MMCM 1 2 50

Table F2.1: Post-Implementation Resource Utilization

Other than Block RAM and I/O, resource utilization is observed to be frugal.

Final Project 19 Multiple Segments Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

I/O is utilized at 79%. As all the inputs required for this implementation are declared, the design does not
require any reconsiderations.

75% of the available Block RAM is utilized. At this point of the project this does not require any reconsider-
ations.

Timing report is provided in Figure F2.2.

Setup Hold Pulse Width
Worst Negative Slack (WNS). 0.746 ns Worst Hold Slack (WHS): 0.007 ns Worst Pulse Width Slack (WPWS): 1.845ns
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 5073 Total Number of Endpoints: 5045 Total Number of Endpoints: 2352

All user specified timing constraints are met.
Figure F2.2: Timing Report
Positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Results obtained from the ILA are provided in figures F2.3 and F2.4.

ILA Status: Idle

Name

W |DAC_CH1[13:0]

W' ADC_CH1[13:0]

& nolabel_line180/reset

¥ nolabel_line180/signal_o[35:0]

& nolabel_line180/data_valid_o
exp_p_tri_io

& nolabel_line180/completed_o

& nolabel_line180/overflow_o

% nolabel_line180/segment_no_o[3:0]
& nolabel_line180Arigger_out

& nolabel_line180frigger_in

ILA Status: Idle

Name

W DAC_CH1[13:0]

W ADC_CH1[13:0]

& nolabel_line1¢

& nolabel_line180/data_valid_o

& nolabel_line1

& nolabel_i

Figure F2.4: Accumulator Module Output Signal

Final Project 20 Multiple Segments Rectangular Waveform

FPGA in Quantum Nadas, Husnu Erman

Some disturbance effects were observed on the output signal. Firstly it can be seen that the ADC input has
a-20 mV (200 per magnitude resolution) offset. Another issue is that even with a 50Q impedance mathcer,
still some reflections are present. These issues are both non-firmware related and can be compensated
with better components and calibration.

The accumulator module output signal was observed to have an amplitude 1000 times the ADC incoming
signal. Hence, the measurement can be deemed a good match with the expected results.

G. Verification Using a Pseudo-Randomly Generated Noisy Rectangular Waveform
G.1. Introduction

In this part of the project, some noise will be added to the test signals generated in the previous signals.
The noise will be pseudo-randomly generated on the FPGA and added to the signal. This will assess the
design validity under real-life conditions.

Additionaly, a user interface through UART will be implemented. This user interface will configure the ex-
periment parameters, and send the start and module reset signals.

G.2. Implementation
G.2.1. Noise Generation through a Pseudo-Random Number Generator

It is impossible to achieve true randomness generated only by a deterministic machine. But the random-
ness can be improved through reducing the times a pattern occurs in a series of elements. A psuedo ran-
dom number generator is implemented using a 168-bit Linear Feedback Shift Register. A 168-bit LFSR re-
peats itself only after a 3.741 x 1050 rotations. Compared to a configuration like in this project where maxi-

mum number of samples is 2.048 x 1019, this amount of randomness is sufficient enough.

Linear Feedback Shift Register has a simple operating principle where some bits in the register are
XOR’ed and placed in the least significant bit. The remaining bits are shifted one times to the left. The
XOR’ed bits are named tapping points. The selection of these bits are optimized! to achieve the least pos-
sibility of encountering a pattern. For a 168-bit LFSR, the most optimized polynomial was discovered to be
x168 4 167 4 153 4 x151 4 1 where the 167, 1661, 1531 and the 1515t bits are XOR’ed.

The last 9-bits are of the implemented LFSR are assigned to a 9-bit signed “noise” register. Later, the gen-
erated noise of amplitude 256 (0.03125 V) is added on to the signal.

1 https://docs.amd.com/v/u/en-US/xapp052 - Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Se-
quence Generators

Final Project 21 Noisy Rectangular Waveform & User Interface

https://docs.amd.com/v/u/en-US/xapp052

FPGA in Quantum

Nadas, Husnu Erman

Noisy signal generation architecture and the experiment architecture including processing system is pro-
vided in Figure G.2.1.1.

UART

Processing System

r—-———>""—"—-—-"—-"—-"—-""-""-""”""”""”"»"”"-""”-"\"="-"\"/-""”"”"»"/-""-"»"”/""»"/--""”"»”"/-"=""="""=""=""="=>""=>="=>""="""""= hl

| Programmable Logic |

| |

| Start Pulse Generator |

(Logic) (t

| |

| > |

| Signal Generation Logic > I

| (D(start Pulse) |

| IS) 7y |

| |

| & N |
()(Send Start Pulse, Exp. Reset, Parameters) | | (Signa)O) ()(Tigger)
) T | LSFR | C)0 O()

Signal Analysis

| |

| (module) |

pe—C e I

(Send StartPuise) | |

S L < ‘

(N, R Parameters) | |

| |

(‘Experiment Reset) | |

(e) |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| (‘Accumulated Signal, Completed, Data Valid etc.) |

| O |

| |

Y J

Figure G.2.1.1: Experiment Architecture

Resource utilization is provided in table G.2.1.1.

Resource Utilization Available Utilization %
LUT 4045 17600 2298
LUTRAM 496 6000 8.27
FF 5728 35200 16.27
BRAM 50 60 83.33
DSP 1 80 1.25
() 59 100 59
BUFG 5 32 15.63
MMCM 1 2 50

Table G.2.1.1: Post-Implementation Resource Utilization

Only Block RAM usage was found to be concerning. Since the architecture relies heavily on the usage of

debug tools which utilize the Block RAMs, this amount of cannot be ommited. An approach to reduce the

Block RAM usage can be utilizing the FPGA I/O and using external devices to observe the results.

Final Project

22

Noisy Rectangular Waveform & User Interface

FPGA in Quantum Nadas, Husnu Erman

Timing report is provided in Figure G.2.1.2.

Setup Hold Pulse Width
Worst Negative Slack (WNS): 0473 ns Worst Hold Slack (WHS): 0.036ns Worst Pulse Width Slack (WPWS): 1.845ns
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 13534 Total Number of Endpoints: 13504 Total Number of Endpoints: 6729

All user specified timing constraints are met.
Figure G.2.1.2: Timing Report

Positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Generated noisy signal and accumulation results are provided in figures G.2.1.3 and G.2.1.4.

ILA Status: Idle

Name

¥ ADC_CH1[13:0]

W DAC_CH1[13:0]

% nolabel_line179/N_i[11:0]
% nolabel_line179/L_i[3:0]

* nolabel_line179/R_i[20:0]

4 nolabel_line179frigger_in
4 nolabel_line179Mrigger_out

4 nolabel_line179/start

W nolabel_line179/signal_o[35:0] 2803715

W nolabel_line179/segment_no_o[3:0]
4 u_ila_0_overflow_o

& nolabel_line179/data_valid_o

Figure G.2.1.4: Accumulated Noisy Signal

To ensure the accumulator works correctly with the different user defined parameters, R = 1 was sent from
the UART. Obtained result is provided in Figure G.2.1.5.

W nolabel_line179/N_i[11:0]
% nolabel_line179/L_i[3:0]

% nolabel_line179/R_i[20:0]
4 nolabel_line179frigger_in
4 nolabel_line179frigger_out

|8 nolabel_line179/start

% nolabel_line179/signal_o[35:0]

% nolabel_line179/segment_no_o[3:0]

i@ nolabel_line179/data_valid_o

Figure G.2.1.5: Accumulator Output Signal with R =1

It was observed that the accumulator is functioning as expected with different user defined paramters at

runtime.

Final Project 23 Noisy Rectangular Waveform & User Interface

FPGA in Quantum

Nadas, Husnu Erman

G.2.2. UART-Based User Interface for Experiment Control

A UART based user interface is created for experiment control. This system handles the module resets,

control of the start pulse and user defined parameters. System starts the accumulator,and signal genera-

tion modules and the “start pulse generation” logic in a reset state. This reset signal differs from the pe-

ripheral reset signal generated from the processing system. Peripheral reset resets each module in the

FPGA which causes UART connection to drop. Hence, another

experiment modules.

“module reset” signal is used to reset only

This user interface can detect invalid inputs for each stage of interaction and prompt user with a warning

to enter a valid input.

Experiment control flow is as follows:

1. User is prompted the current experiment setup and asked if they want to define a new setup.

1.1. If the user selects yes, they enter the parameter they want to change in the next stage. The parame-

ters are updated accordingly and the program will move on with the next stage.
1.2. If the user selects no, the program will move on with the stage after the parameter definition stage.

The user is prompted the current updated experiment setup and asked whether they want to start an

experiment with the current setup.

2.1. If the user selects yes, the parameters are sent to the programmable logic unit, module reset is de-
asserted and the experiment start signal is sent to the programmable logic unit with the “send start

pulse” signal.

2.2. If the user selects no, the parameters are not updated in the programmable logic and the program

will move on with the next stage.

The user is prompted if they want to continue with another experiment. In this stage, module reset is
asserted without depending on the users choice. If the user selects yes, the modules will be ready for a
new experiment. Otherwise, modules are resetted once again before the peripheral reset is asserted. If

the user selects no at this stage, the program is ended.

An image of the user interface is provided in Figure G.2.2.1.

he current experiment setup is:
[Sample Count: 2048

[Segment Count: 18

[Sequence Count: 1000000

Do you want to define a new experiment setup? <{(y/nd:

hange sample count (N>, segment count (L) or sequence count (R). Enter (x> to stop defining parameters:
[Enter your desired sample count (max 2048>: 5080

he new sample count is 508 samples per segment

hange sample count (N>, segment count (L) or sequence count (R>. Enter (x> to stop defining parameters:
[Enter your desired segment count (max 18>: 3

he new segment count is 3 samples per sequence

hange sample count (N>, segment count (L) or sequence count (R). Enter (x> to stop defining parameters:
[Enter your desired sequence repetition count (max 18080008): 1068

he new sequence repetition count is 1808 sequences per waveform

hange sample count (N>, segment count (L) or sequence count (R>. Enter (x> to stop defining parameters:
he current experiment setup is:

[Sample Count: 508

[Segment Count: 3

[Sequence Count: 1008

Do you want to start the experiment with the selected parameters? (y/nd: y

Do you want to set up another experiment? <y/nd>: nfi

Figure G.2.2.1: UART and Terminal Based User Interface

Final Project 24 Noisy Rectangular Waveform & User Interface

FPGA in Quantum Nadas, Husnu Erman

H. Verification Using Quantum Experiment Signals

H.1. Introduction

In this part of the project, real quantum experiment signals will be fed to the modules and validation will
be done using these signals. In a real world scenario, these signals would be sent through the ethernet
connection. However in this project, these signals will be sent using on-board memoru. A key issue to con-
sider here is that waveforms of these size require a large memory. Memory on the programmable logic unit
is not enough for data of this size. On-board DDR RAM has a sufficient size but control is tedious for such
memaory units.

To keep the design as simple as possible, programmable logic block memory is used to store the signals.
To fit the memory size constraints, the signals will be averaged using MATLAB and a generated noise will
be added on the FPGA. While this is not a hundred-percent accurate representation of how this module

would perform in a real-world experiment, this setup is sufficient for a proof-of-concept.

H.2. Implementation

Provided quantum experiment signals were averaged using the mean command. Averaged signals are
provided in Figure H.2.1.1.

Averaged Ground Signal Averaged Excited Signal

e

°

R
o

e o
9 9
S e

Quadrature [au]
14
2

o

Quadrature [au]

50 100 150 200 250 300) 0 50 100 150 200 250 300
Time [8 ns] Time [8 ns]

Figure H.2.1: Averaged Quantum Experiment Signals

Averaged quantum experiment signals were exported to a memory coefficient file with the correct initial-
ization parameters. The generated memory coefficient files were used to initialize two ROMs of size 300.

Final Project 25 Verification Using Quantum Experiment Signals

FPGA in Quantum

Nadas, Husnu Erman

Architecture of the signal generation module for generating noisy quantum signals is provided in Figure

H.2.2.

Rising

Edge of the Start

Pulse

(5er)-

v
Trigger
Counter

Y Y
< Trigger
Period
v

Trigger = 1
(for 4 Clock Cylces)

A

> Repellhon le
Coumer

Segmem
Coun(er » Output

(‘Segment Counter == 2)

Sample
Counter
T 1
Gmund ROM Exclted ROM 4 “m

H.2.2: Signal Generation Logic for Quantum Experiment Signals

Provided signal generation logic is a substitute for the “Signal Generation Logic” block inside the Signal

Generation module in Figure G.2.1.1.

Resource utilization is provided in table H.2.1.

Resource Utilization Available Utilization %
LUT 4050 17600 23.01
LUTRAM 496 6000 8.27
FF 5752 35200 16.34
BRAM 51 60 85
DSP 1 80 1.25
10 59 100 59
BUFG 5 32 15.63
MMCM 1 2 50

Table H.2.1: Post-Implementation Resource Utilization

Only Block RAM usage was found to be concerning. Since the architecture relies heavily on the usage of

debug tools which utilize the Block RAMs, this amount of cannot be ommited. An approach to reduce the

Block RAM usage can be utilizing the FPGA I/O and using external devices to observe the results.

Final Project

26 Verification Using Quantum Experiment Signals

FPGA in Quantum Nadas, Husnu Erman

Timing report is provided in Figure H.2.3.

Setup Hold Pulse Width
Worst Negative Slack (WNS): 0.411ns Worst Hold Slack (WHS): 0.030ns Worst Pulse Width Slack (WPWS): 1.845ns
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS). 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 13654 Total Number of Endpoints: 13624 Total Number of Endpoints: 6757

All user specified timing constraints are met.
Figure H.2.3: Timing Report

Positive WNS indicates that a signal may arrive earlier than expected, which infers no problems.

Generated noisy signal and accumulation results are provided in figures H.2.4 and H.2.5.

W nolabel_line179/signal_o[35:0]

% nolabel_line179/segment_no_o[3:0]
& nolabel_line179/data_valid_o

8 u_ila_0_overflow_o

Figure H.2.5: Accumulated Quantum Experiment Signals

Acquired data was imported to MATLAB for a comparison. Signals sent from the DAC and received from
the ADC are provided in Figure H.2.6.

o Visualization of Measurements

DAC Output Signal
ADC Output Signal

Amplitude [mV]

150 I I I I L)
0 100 200 300 400 500 600 700 800 900 1000

Time [8 ns]

Figure H.2.6: DAC and ADC signals

Final Project 27 Verification Using Quantum Experiment Signals

FPGA in Quantum Nadas, Husnu Erman

Aforementioned ~20 mV negative voltage offset can be observed from the signals. When comparing the
accumulated signal to the MATLAB averaged signal, this offset was compensated. Visual comparison of
the signals is provided in Figure H.2.7.

- Visualization of Averaging

FPGA Averaged Signal
MATLAB Averaged Signal

50 -

Amplitude [mV]

o
T

-50 L L I
0 100 200 300 400 500 600

Time [8 ns]
Figure H.2.7: Averaged Signals

The maximum error was found to be 4.05 mV. Compared to signal max Vpp, this is a 4.2% error rate. An
error rate this low indicates a good match with the expected result and the conclusion that the system is

working as expected can be made.

It was observed that the signals dropped to zero 26 samples earlier. This may be caused by the improper

transmission of triggers and can be calibrated.

Final Project 28 Verification Using Quantum Experiment Signals

